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PREFACE

Dr. C. Herbert Law of the Theoretical Aerodynamics Research

Laboratory, Aerospace Research Laboratories, Air Force Systems Command,

performed the work presented in this report under Project 7064, entitled

"High Speed Aerodynamics."

The tests were conducted in the Aerospace Research Laboratories'

Mach 6 high Reynolds number wind tunnel between July 1974 and OctoDer

1974. This report presents the results of an investigation of turbulent

boundary layer separation produced by a skewed shock wave.
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SECTION T

INTRODUCTION

Ilteractions between shock waves and boundary layers have been

investigated because they can produce local aerodynamic heating rates

several times larger than anticipated. These interactions can be present

in the wing/body and fin/body junctiGns of high speed vehicles, and are

typically three-dimensional. One of the more common configurations that

cause shock wave induced boundary layer separation is the axial corner,

where the shock wave geverated by one compression surface impinges on the

boundary layer of Lnc: second surface. The imposed adverse pressure gra-

dient on the boundary layer flow can produce separation which, in the

three-dimensional case, will scavenge off the low energy flow of the

boundary layer. The reattaching flow consists of high energy air which

causes elevated heating rates near the axial corner.

This report presents the results of an investigation of turbulent

boundary layer separation produced by a skewed shock wave. The shock

wave was produced by a shok generator whose nonswept leading edge was

perpendicular to the uniform freestream flow. The test boundary layer

was produced on a flat plate whose surface was aligned with the freestream

flow. The mode". configuration is shown in Fig. 1.

In an elementary sense, the skewed shock wave interaction is similar

to the two-dimensional planar shock wave interaction if viewed in a cross

section plane perpendicular to the skewed shock. In this plane the skewed

shock appears normal to the surface, and a crossflow is present and

perpendicular to the plane. Basically the inviscid flow field is conical



in nature, which is to say the flow structure grows linearly from the

shock generaLor leading edge. The viscous interaction region is generally

not conical, and varies nonlinearly in the axial direction because the

boundary layer characteristics are changing nonlinearly. However, for

high Reynolds numbers and turbulent flow in the interaction region, the

boundary layer is thin and the interaction configuration is dominated by

the inviscid flow field. Under these couditions, the flow field can be

assumed nearly conical downstream of the immediate vicinity of the shock

generator leading edge-flat plate junction. For large shock generator

angles and correspondingly large regions of separation, this assumption

is not valid. In general, at any given axial station, the flow field will

resemble that shown in Fig. 2.

The objectives of this investigation were to ident-ify the surface

characteristics of the skewed shock wave-turbulent boundary layer inter-

action in '_Oe corner region of the flat plate-fin configuration. The

complicatecd structure of the inviscid flow field was not investigated or

analyzed, and, in general, for this configuration would be relatively

indeperdent of ttie viscous interaction for small regions of separation.

Whatever the inviscid structure of the corner region, for sufficiently

large shock generator angles the imposed adverse pressure gradient is

sufficient to cause separation. The low energy flow in the boundary layer

is scavenged off by the crossflow vortex, and only the outer flow in the

boundary layer has sufficient energy to aegotiate the adverse pressure

gradient. The resulting surface streamline pattern is shown in Fig. 3.

In this investigation, surface oil flow patterns and lateral

distributions of surface pressure and heat transfer at five axial stations
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were obtained for two freestream unit Reynolds numbers of 1.0 and

3.0 x 107 per foot at a Mach number of 5.90. Shock generator angles of

4 to 20 degrees were investigated.

3



SECTION II

'EXPERIMENTAL PROCEDURE,

1. WIND TUNNEL DESCRIPTION

The tests were conducted in the Aerospace Research Laboratories'

Mach 6 high Reynolds number wind tunnel. This facility is a blowdown

wind tunnel which operates at stagnation pressures from 700 to 2100 psia

and a stagnation temperature of 1100 R (-.50°R). The test region is an

open jet approximately 18 inches long w. •h a c wre diameter of 10 Indhes.

a complete description of the faciiitý is given in Ref. 1.

2. MODEL DESIGN

The model consisted of a sharp leading edge flat plate with a 10-inch

span and a 16-inch chord. The shock generator consisted of a sharp leading

edge fin with a chord of 7.55 inches and a height of 3 inches. The shock

generator was mounted to the flat plate with its surface and leading edge

perpendicular to the flat plate surface. The leading edge of the uhock

generator was approximately 8.5 inches downstream of the flat plate leading

edge. The shock generator angle could be varied from 0 to 20 degrees

*• (ce'mpression), and the surface could be moved laterally across the flat

plate to shift the interaction :egion with respect to the instrumentation

on the flat plate, The shock generator was not instrumented. The model

configuration is shown in Fig. 4.

The model was mounted in the wind tunnel on a rigid support strut.

The flat plate surface was aligned parallel to the freestream flow. Prior

to wind tunnel starting, the model was ejected from the test section Into

the test cabin. After wind tunnel starting and stabilization (5-10 seconds),

4
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the model was injected into the test core ('x, 2 seconds) and appropriate

data were then recorded. After run times from 10 to 60 seconds, the

model was ejected from the test section prior to wind tunnel shutdown.

The model/wind tunnel configuration is shown in Fig. 5.

3. INSTRUMENTATION

The flat plate model had three 10 x 10 inch square inserts to obtain

measurements of surface pressure and temperature and oil flow visualizations.

One insert was instrumented with 60 iron-constantan thermocouples spot

welded on the back side of the insert at the locations indicated in Fig. 4.

The region along each thermocouple row was milled out to a nominal 0.040-inch

thickness to provide a thin-skin surface at least 0.5 inch in all directions

from each thermocouple. Each thermocouple output was connected to a sepa-

rate channel of a Research, Inc., Model 812-11 Universal Signal Conditioner

and Reference Junction Compensator operating at a thermostatically controlled

reference temperature of 150 F.

The pressure distribution model insert was instrumented with 55 pressure

orifices at the locations indicated in Fig. 4. The pressure orifices were

connected to multiple Scanivalve Model 48CBM rotating valves with built-in

variable reluctance transducers.

The oil flow visualization model insert consisted of a blank plate

with its surface painted flat-black and reference scribed with 0.5-inch-

square grids. The oil flow visualization was achieved with a mixture of

silicone oil, titanium dioxide, oleic acid and "STP" oil. The best results

were obtained by spreading thin lines of oil on the model surface along the

lateral grid lines. Short run! of 10 to 15 seconds were required to

5
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achieve desirable results. Measurements and photographs of the oil flow

pattern were made after wind tunnel shutdown.

The outputs from the signal conditioners were recorded on-line in

analogue form on X-Y recorders. The data were also digitized and recorded

on magnetic tape by an Adage Model 200 Ambilog computer for later reduc-

tion and analysis on a CDC 6600 computer. A complete description of the

data reduction procedures to obtain heat transfer data from the the:mo-

couple outputs is contained in Ref. 2.

6



SECTION III

DISCUSSION OF RESULTS

Surface pressure and heat transfer data and oil flow photographs

were obtained for two freestream unit Reynolds numbers of 1.0 and

3.0 x 107 per foot and for eight shock generator angles between 4 and

20 degrees. Pressure and temperature data were obtained at 0.125-inch

increments along each axial station by moving the shock generator with

respect to the flat plate instrumentation. The local undisturbed refer-

ence values of static pressure and heat transfer were obtained without the

shock generator. The reference static pressure was nearly constant over

the entire flat plate surface and corresponded to a freestream Mach number

of 5.85. The reference distributions of heat transfer on the flat plate

centerline are shown in Fig. 6. All heating values were measured with an

initial uniform flat plate wall ,temperature near ambient, or approximately

50% of the adiabatic wall temperature.

A total pressure survey through the undisturbed flat plate turbulent

boundary layer at station 5 was made with a pitot tube rake. The resulting

Mach number distribution for one Reynolds number is shown in Fig. 7 and

compared with theoretical calculation results obtained by an implicit finite

difference numerical scheme with intermittency correction. The calculated

undisturbed boundary layer thicknesses along the flat plate for both Reynolds

numbers investigated are shown in Fig. 8.

The lateral distributions of static pressure and heat transfer at

stations 4 and 5 are presented in Fig. 9. The pressures and heat transfer

values have been nondimensionalized by the local undisturbed reference

values. The distributions have been presented as a percentage of the local

7



lateral distance between the shock generator surface and the shock wave.

This coordinate allows for more direct comparison between distributions

obtained along different axial stations. If the flow field were truly

conical, the distribution along station 4 should be identical to that along

station 5 in the present coordinate system. Of the distributions presented,

only the static pressure distributions for a shock generator angle of 200

show noticeable departure from conical flow between stations 4 and 5.

The present coordinate system also allows approximate comparisons

to be made between distributions for different shock generator angles. At

a given station, the lateral distance between the shock generator surface

and the shock wave changes very little for shock generator angles between

3 and 16° (Ys = 0.95 at 6 SG = 3 and 160, Y = 0.87 at 6 SG 10 for an

axial distance of 6 inches downstream of the shock generator leading edge).

Sketches of the oil flow photographs are shown in Fig. 10 for shock

generator angles of 8 through 20° and a Reynolds number of 1 x 107 ft-I.

Tne locations of separation and reattachment obtained from the oil flow

photographs are indicated on the pressure and heat transfer distributions

presented in Fig. 9. The separation line is represented by converging sur-

face streamlines and the reattachment line is represented by diverging

streamlines. In general, the separation and reattachment lines were quite

linear, except near the shock generator leading edge. The oil flow patterns

did not appear to be sensitive to Reynolds number.

The locations of separation and reattachment are also shown in Fig. 11

as they varied with shock generator angle. While the distance between the

surface and the separation line increased dramatically with increasing shock

generator angle, the distances between the surface and the reattachment line

8



and the shock wave were nearly constant. Near the incipient separation

angle, apprtnimately between 2 and 30, one would expect the location of

separation and reattachment to be nearly coincident with the shock wave

location.

In general, the locations of peak surface pressure and heat transfer

were coincident, and roughly equal to 40 to 45% of the distance to %e

shock location. The peak heating value increased with shock generator

angles and peak pressure for fixed freestream Reynolds number, and decreased

with increasing Reynolds number for fixed shock generator angle (and fixed

peak pressure). No attempt was made to correlate the peak heat values with

peak pressure for two reasons. First, the small density of data points

did not give accuracy in choosing the correct peak value. Second, as

was pointed out in Ref. 2, the heating data presented here were not corrected

for conduction losses. Estimates Fhowed that these losses were significant,

at least in the peak heating region, and that they could amount to 15 to 25%

of the peak heating value.

Only the gross features of the skewed shock wave-turbulent boundary

layer interaction have been discussed here. No attempts were made to define

the fine, detailed structure of the interaction or the inviscid flow field,

although these investigations will continue. Of particular importance is

the interior structure of the separated region for large shock generator

angles. The "dips" in the surface pressure distributions, the interior

small peaks in the heat transfer distributions, and the secondary flow in

the oil flow patterns indicate the possibility of the existence of secondary

vortices fo:0" large regions of separation. These and other problems will be

investigated in more detail in the future.

9



SECTION IV

SUM1ARY AND CONCLUSIONS

The results of an experimental investigation of the three-dimensional

interaction between a skewed shock wave and a turbulent boundary layer have

been presented. The tests were conducted at a freestream Mach number of

5.85 and two Reynolds numbers of 1.0 x 107 and 3.0 x 107 per foot. Surface

pressure and heat transfer distributions and oil flow photographs were

obtained to define the scale of the interactions for shock generator angles

between 4 and 200. The conclusions drawn from this investigation are:

1) The distance between the shock generator surface and the

separation line increased with increasing shock generator angle while the

distance between the surface and the shock wave and reattachment remained

nearly constant.

2) The locations of peak surface pressure and heat transfer were

coincident and roughly equal to 40 to 45% of the distance to the shock

location.

3) The peak heating value increased with shock generator angle and

peak pressure for fixed freestream Reynolds number, and decreased with

increasing Reynolds number for fixed shock generator angle.

4) The viscous interaction was nearly conical except in the immediate

vicinity of the shock generator leading edge and for very large shock

generator angles, greater than 160.

10
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LIST OF SYMBOLS

Sh Heat transfer coefficient, BTU/ft2 sec R

h. Local undisturbed heat transfer coefficient

M Mach number

P Pressure

Re Reynolds number

T Temperature

X Axial distance from flat plate leading edge

XLE Axial distance from shock generator leading edge

Y Lateral distance from flat plate edge

Y Lateral distance from shock generator surface

Y S Lateral distance from shock generator surface to shock wave

0 Lateral distance from shock generator surface with shock

generator at zero degrees

Z Vertical distance from flat plate surface

Boundary layer thickness

•SG Shock generator angle

SUBSCRIPTS

0 Freestream condition

0 Stagnation condition

W Wall condition
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